Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of 4 numerical solvers for stiff and hybrid systems simulation

Authors: Georg Frey; Felix Felgner; Liu Liu;

Comparison of 4 numerical solvers for stiff and hybrid systems simulation

Abstract

Numerical simulation of stiff and hybrid systems is widely used in various engineering domains. Numerical solvers, originally designed for purely continuous problems, are not sufficient for these systems. Modern simulation environments provide necessary modifications and extensions to solve the problem. The implementation details of solvers and run time systems greatly affect the performance of simulations regarding accuracy, velocity of simulation, compactness of results, and efficiency. Since no all-powerful solver exists, we assess four popular solvers (DASSL, LSODAR, DOPRI5, RADAU IIA), included in the all-purpose simulator Dymola® for different problems with continuous, stiff, and hybrid behavior. Key traits, including the number of steps, accuracy, CPU time and the event handling capability, are examined and advice for solver selection is given.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average