Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS (Data Archiving...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/ever.2...
Conference object . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Field weakening capability of 12-stator/10-rotor-pole variable flux reluctance machines

Authors: K. O. Boynov; Samuil Alexandrov; J. Bao; Elena A. Lomonova; Bart L. J. Gysen;

Field weakening capability of 12-stator/10-rotor-pole variable flux reluctance machines

Abstract

Variable flux reluctance machines (VFRMs) are viable candidates for automotive applications. This paper investigates the field weakening capability of a 12/10 VFRM. Starting with voltage and toque equations, the paper reveals the relationship between torque-speed characteristics and the current arrangement (slot division) of both DC-field and armature windings. The method for expanding the working envelope by tuning DC or AC currents is discussed for different slot divisions. The results are validated by 2D finite element analysis.

Country
Netherlands
Keywords

Sustainability and the Environment, Automotive Engineering, SDG 7 - Affordable and Clean Energy, Renewable Energy, Electrical and Electronic Engineering, SDG 7 – Betaalbare en schone energie

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research