Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ever.2...
Conference object . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New approach for harmonic mitigation in single-phase five-level CHBMI with fundamental frequency switching

Authors: Rizzo, R.; Schettino, Giuseppe; CASTIGLIA, VINCENZO JUNIOR; LIVRERI, Patrizia; MICELI, Rosario; VIOLA, Fabio; Roscia, M.;

New approach for harmonic mitigation in single-phase five-level CHBMI with fundamental frequency switching

Abstract

The main objective of this paper is to study and analyse the voltage output waveform of a multilevel inverter, to suggest a new approach for harmonic mitigation improving the converter performance. These last type of converters represent a new technology in the field of DC/AC electrical energy conversion, presenting advantages respect to the traditional converters. In fact, the multilevel power converters present a low harmonic content and a high voltage level. The paper considers a five-level single-phase cascaded H-bridge inverter and fundamental frequency modulation techniques. The voltage waveform analysis has allowed to identify a working area of the converter where there are lowest values of the considered harmonic amplitude. The simulated behaviour of the model of the converter, with the logic piloting gate signals, has been obtained in Matlab-Simulink environment.

Country
Italy
Keywords

Multilevel Power Converter; Phase Shifted Voltage Cancellation; Soft switching; Renewable Energy, Sustainability and the Environment; Automotive Engineering; Electrical and Electronic Engineering, Sustainability and the Environment, Soft switching, Phase Shifted Voltage Cancellation, Settore ING-IND/33 - Sistemi Elettrici per L'Energia, Automotive Engineering, Renewable Energy, Electrical and Electronic Engineering, Multilevel Power Converter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average