Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://biblio.ugent.be/public...
Conference object
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icc402...
Conference object . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Caching at the edge in high energy-efficient wireless access networks

Authors: Vallero G.; Deruyck M.; Joseph W.; Meo M.;

Caching at the edge in high energy-efficient wireless access networks

Abstract

In the next generation of Radio Access Networks (RANs), Multi-access Edge Computing (MEC) is considered a promising solution to reduce the latency and the traffic load of backhaul links. It consists of the placement of servers, which provide computing platforms and storage, directly at each Base Station (BS) of these networks. In this paper, the caching feature of this paradigm is considered in a portion of a RAN, powered by a renewable energy generator system, energy batteries and the power grid. The performance of the caching in the RAN is analysed for different traffic characteristics, as well as for different capacity of the caches and different spread of it. Finally, we verify that the usage of a strategy that aims at reducing the energy consumption does not impact the benefits provided by the mobile edge caching.

Countries
Italy, Belgium
Keywords

5G NETWORKS, Technology and Engineering, Multi-access Edge Computing, Multi-access Edge Caching, renewable energy, SCENARIOS, Radio Access Network, energy efficiency; Multi-access Edge Caching; Multi-access Edge Computing; Radio Access Network; renewable energy, energy efficiency, MOBILE

Powered by OpenAIRE graph
Found an issue? Give us feedback