
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Late Acceptance Selection Hyper-heuristic for Wind Farm Layout Optimisation Problem
Wind is a promising source of renewable energy which can be harvested using wind turbines placed on farms. An efficient wind farm layout achieving various engineering and financial objectives is crucial to ensure the sustainability and continuity of energy production. In this study, a high-level search technique, namely late acceptance selection hyper-heuristic is applied to optimise the layout of wind farms. This approach aims to find the best placement of turbines at a given site, maximising the energy output while minimising the cost at the same time. The computational experiments indicate that the late acceptance selection hyper-heuristic improves upon the performance of a previously proposed genetic algorithm across all scenarios and an iterated local search over the majority of scenarios considering the best solutions obtained by each algorithm over the runs.
- University of Khartoum Sudan
- Nottingham Trent University United Kingdom
- Lancaster University United Kingdom
- University of Khartoum Sudan
- University of Salford United Kingdom
004, genetic algorithms, wind energy generation, heuristic algorithms, renewable energy sources, optimization
004, genetic algorithms, wind energy generation, heuristic algorithms, renewable energy sources, optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
