
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance analysis on a power architecture for EV ultra-fast charging stations
This paper is focused on the design criteria of the power conversion systems operating within ultra-fast charging stations for electric vehicles. The proposed architecture is based on a DC bus, which features the integration of renewable energy sources and buffered storage systems, performing the new concept of smart grid system. Simulations of the power converters and storage systems, working as power devices of recharging station architecture, are implemented in the Matlab-Simulink environment with models of each subcomponent provided by the Sim-Power-System tool. The reported simulations are mainly devoted to verify the design criteria of the architecture scheme and the control strategies of the power fluxes related to power converters. The advantages and convenience in terms of power quality and requirementsfrom the main grid are shown, also during the EV fastcharging operations. Finally, the resulted recharging times are evaluated as comparable to the fuelling times generally taken by traditional oil based vehicles.
- University Federico II of Naples Italy
- National Research Council Italy
- Information Technology University Pakistan
- Istituto Motori Italy
- Information Technology University Pakistan
Hybrid Vehicles, Energy Storage, Electric Vehicles, Recharging Stations, Vehicle to Grid
Hybrid Vehicles, Energy Storage, Electric Vehicles, Recharging Stations, Vehicle to Grid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
