Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/iccisc...
Conference object . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Short Term Power Load Forecasting using Machine Learning Models for energy management in a smart community

Authors: Khursheed Aurangzeb;

Short Term Power Load Forecasting using Machine Learning Models for energy management in a smart community

Abstract

The short-term power load prediction of single households is a challenging issue in the research fields of Smart Grid (SG) management/planning, viable energy usage, energy saving and the bidding system design of electricity market. The reason for this is the unpredictability and uncertainty in electricity consumption pattern of individual household. The energy management/planning of the SGs is even becoming more complex due to the integration of Distributed Energy Resources (DERs). The DERs are useful in decreasing the bill of the electricity consumer by empowering them to produce their own green energy. With the huge development in Advanced Metering Infrastructure (AMI), Big Data (BD) and machine learning models, the potential benefits of dynamic pricing schemes and DERs can be fully accomplished. But, the accurate prediction of power generated through DERs as well as forecasting the user power profile is a big issue. The user power profile varies hourly, daily, weekly and seasonally due to the various environmental and seasonal effects. In this work, the focus is on exploring and evaluating machine learning models for accurately predicting user power profile for energy management in a smart community. Eight regression models are evaluated for the prediction of the power consumption of the single household. The simulation results indicate that the Radial Basis Function (RBF) kernel is the most suitable machine learning model for forecasting the short term power consumption of the single household.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%