Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEJ Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEJ Transactions on Electrical and Electronic Engineering
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://doi.org/10.1109/iciea....
Conference object . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LPV modelling and gain-scheduled control approach for the transient stabilization of power systems

Authors: Kang-Zhi Liu; Shengwei Mei; Rong He;

LPV modelling and gain-scheduled control approach for the transient stabilization of power systems

Abstract

AbstractIn this paper, a new control approach is proposed for the transient stabilization of a single‐machine infinite‐bus power system. The proposed method is based on linear parameter varying (LPV) modeling of the nonlinear power system and the design of a gain‐scheduled output feedback controller. It is well‐known that when large disturbances or a fault occurs, the nonlinearity inherent in power systems can no longer be ignored. The proposed method can handle the nonlinear model directly. First, we show that the nonlinear model can be transformed equivalently into an LPV system with the rotor angle as the scheduling parameter. Then, a gain‐scheduled output feedback controller is designed based on robust pole placement and L2‐gain minimization. Simulation results verify that the proposed method is better than well‐tuned conventional power system stabilizer (PSS) control. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average