Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A sensorless three-phase induction motor drive using indirect field oriented control and artificial neural network

Authors: Phi C. Do; Phi H. Pham; Hoa X. Ha; Cong T. Nguyen; Son Truong Nguyen; Tuan V. Pham;

A sensorless three-phase induction motor drive using indirect field oriented control and artificial neural network

Abstract

Sensorless induction drive systems are more popular due to their reliability and low cost. Therefore, it is very beneficial to use sensorless drive systems where the rotor speed can be estimated by means of an intelligent control algorithm instead of the use of directly measuring methods. This paper presents a method of the online speed estimation for a three-phase induction motor in Indirect Field Oriented Control (IFOC) scheme accompanying an Artificial Neural Network (ANN). The error-back propagation algorithm is used for training the neural network. The error between rotor flux linkages in the adaptive model and the reference model is back propagated to adjust weights of the neural network model to estimate the motor speed. The simulation results obtained using MATLAB/Simulink show that the estimated motor speed always tracks the actual motor speed with very small error as long as the sampling time is small enough and the learning rate can be chosen appropriately.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%