Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic generation control in a multi-area conventional and renewable energy based power system using differential evolution algorithm

Authors: Muhammad Ahsan Zamee; Kazi Khairul Islam; Ashik Ahmed; Mir Muntasir Hossain;

Automatic generation control in a multi-area conventional and renewable energy based power system using differential evolution algorithm

Abstract

The function of Automatic Generation Control (AGC) is to regulate the output power of the corresponding generator in response to changes in system frequency or tie line loading or in both cases within a prescribed limit. In this paper Differential Evolution (DE) based Proportional-Integral (PI) controller is designed and simulated to observe its performance for a two area Hydro-Thermal power system. The purpose of the DE is to find out the optimal parameter values of the PI controller (K p and K i ). The Optimal set of values is chosen based on eigenvalue of system matrix and objective function. The performance was evaluated based on the transient response (Settling time and peak overshoot) of the system while different step load changes were applied on both or either of the areas. The proposed controller has been found functioning properly for not only smaller (1%) but also larger (5%) load disturbances. All the simulations are done using MATLAB/SIMULINK software.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average