
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A genetic algorithm for the definition of nodal load time evolutions in micro grids assessment
handle: 11584/187639
One of the on-going research topic in smart grid planning and assessment is the definition of suitable time evolution of load profiles in micro grids by using the information about the network topology and the available electrical measurements. This paper presents an approach for a heuristic definition of nodal load profiles in micro grids when the available measurements are not exhaustive for its state evaluation. In particular, in order to develop the preliminary micro grids assessment, a Genetic Algorithm (GA) has been employed to determine possible evolution of nodal load profiles that satisfy the power system constraints and input measurements. In order to verify the effectiveness of proposed methodology a real micro grid has been considered as case of study. The micro grid has been simulated in Digsilent and the used GA has been implemented in Matlab environment. Finally, Digsilent Programming Language (DPL) has been employed for interfacing the GA with Digsilent.
- University of Cagliari Italy
Genetic algorithm; Micro grid assessment; Micro grid design; Nodal Load profiles
Genetic algorithm; Micro grid assessment; Micro grid design; Nodal Load profiles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
