Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icrera...
Conference object . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of Thermal Behavior of Large Lithium-Ion Prismatic Cell in Natural Air Convection

Authors: Youssef, Rekabra; He, Jiacheng; Akbarzadeh, Mohsen; Jaguemont, Joris; Sutter, Lysander De; Berecibar, Maitane; Mierlo, Joeri Van;

Investigation of Thermal Behavior of Large Lithium-Ion Prismatic Cell in Natural Air Convection

Abstract

This paper attempt to study the effect of natural air convection of large commercial lithium-ion (Li-ion) battery prismatic cell (50Ah) for rechargeable energy storage applications of electric vehicles (EVs). In particular, a numerical thermal model was developed and experimentally validated in different ambient temperature conditions. The cell anode is graphite based, and The cathode of the cell is nickel, manganese and cobalt (NMC) based. Moreover, the surface temperature of the cell is recorded with the use of a thermal camera and thermocouples, then it was compared with simulation results.The experimental results show a rather uniform temperature distribution, with maximal temperature difference of 0.7°C, during the discharge load profile whereas the maximal temperature difference at the end of discharge load was around 1.5°C. 3D thermal modeling simulation results executed at different ambient conditions are compared and validated with the experimental results, wherein the error fluctuates around 2°C. Furthermore, the maximal temperature area was observed at the center point of the battery.Finally, the rose of the temperature in the discharge test was around 22°C at 10°C ambient condition and 20°C at 25°C ambient condition.

Country
Belgium
Related Organizations
Keywords

Lithium-Ion Battery, electric vehicle, natural convection, prismatic cell, thermal model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green