Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Southe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
University of Southern Denmark Research Output
Contribution for newspaper or weekly magazine . 2014
https://doi.org/10.1109/igcc.2...
Conference object . 2014 . Peer-reviewed
Data sources: Crossref
ResearchGate Data
Conference object . 2014
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Load management of data centers as regulation capacity in Denmark

Authors: Clausen, Anders; Ghatikar, Girish; Jørgensen, Bo Nørregaard;

Load management of data centers as regulation capacity in Denmark

Abstract

Replacing the traditional fossil-based electricity generation with clean renewable energy is critical to address carbon emissions and climate change in particular. Denmark has a particularly aggressive strategy for renewable energy generation. By 2020 50% of electricity production is to be wind based and by 2050 the goal is to have an energy production based entirely on renewable energy. Renewable energy such as solar and wind is subject to variations due to changing weather conditions. This requires additional balancing capacity and ancillary services in order to balance the grid for transmission system operators and distribution system operators and balance errors in forecasts made by balance responsible parties. By enabling the demand-side to adapt consumption to match power generation, we can address this in a cost-effective and environmental sound way. In this context, data centers are of special interest as they account for 500 GWh of consumption in Denmark or nearly 2% of the total electricity consumption. This paper performs an analysis on load management capabilities of data centers in Denmark based on the experiences in the U.S. We characterize the load management capabilities of the data centers based on their types, technology, and their application as grid management resources. Further, we identify demand-side entry barriers towards market participation. Our findings suggest that groups of data centers can offer dynamic load flexibility as virtual power plants, and thereby support the evolution of the Danish energy systems towards its 2020 and 2050 goals.

Country
Denmark
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Top 10%