

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting of short-term PV production in energy communities through Machine Learning and Deep Learning algorithms
Photovoltaic (PV) modules and solar plants are one of the main drivers towards zero-carbon future. Energy communities that are engaging citizens through collective energy actions can reinforce positive social norms and support the energy transition. Furthermore, by incorporating Artificial Intelligence (AI) techniques, innovative applications can be developed with huge potential, such as supply and demand management, energy efficiency actions, grid operations and maintenance actions. In this context, the scope of this paper is to present an approach for forecasting an energy cooperative’s solar plant short term production by using its infrastructure and monitoring system. More specifically, four Machine Learning (ML) and Deep Learning (DL) algorithms are proposed and trained in an operational solar plant producing high accuracy short-term forecasts up to 6 hours. The results can be used for scheduling supply of the energy communities and set the base for more complex applications that require accurate short-term predictions, such as predictive maintenance.
photovoltaic, machine learning, deep learning, energy prediction, short-term prediction, artificial intelligence
photovoltaic, machine learning, deep learning, energy prediction, short-term prediction, artificial intelligence
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 4 download downloads 1 - 4views1downloads
Data source Views Downloads ZENODO 4 1


