Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/isgteu...
Conference object . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reserve requirements in AC power systems with uncertain generation

Authors: V. Rostampour; K. Margellos; M. Vrakopoulou; PRANDINI, MARIA; G. Andersson; J. Lygeros;

Reserve requirements in AC power systems with uncertain generation

Abstract

This paper deals with the problem of reserve scheduling for power systems with wind power generation, and proposes a new set-up that incorporates an AC Optimal Power Flow (AC OPF) formulation. The AC OPF problem is nonconvex and in general hard to solve. Here we propose an approach building on convex relaxations of the AC OPF problems and discuss a modification that we believe has certain advantages when combined with the reserve scheduling formulation. Numerical simulations suggest that the proposed relaxation technique results in a feasible solution for the exact problem. Using the proposed modification of the AC OPF problem, we focus on systems with uncertain generation and formulate a chance constrained optimization problem to determine the minimum cost of production and reserves. Due to the complex structure of the resulting problem, we use a heuristic procedure to solve it numerically. This is achieved following a sampling based methodology. The proposed algorithm is applied to the IEEE-30 bus network and is compared against its DC power flow counterpart by means of Monte Carlo simulations.

Country
Italy
Related Organizations
Keywords

AUT

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average