Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consumer electrical equipment asynchronous and coordinating response for frequency regulation

Authors: Baling Fang; Xiangxing He; Jinfan Zhang; Canbing Li; Lina He; Yijia Cao; Haiqing Shi;

Consumer electrical equipment asynchronous and coordinating response for frequency regulation

Abstract

Demand response plays an important role in smart grid. In this paper, an asynchronous and active demand response strategy for consumer electrical equipment (CEEs) is proposed, aiming at power system frequency regulation. CEEs, if the load is non-rigid, can response to power system frequency deviation by adjusting operating parameters and power consumption actively. It is very helpful for frequency regulation of power system, especially with high intermittent power source penetration rate. The strategy adopts asynchronous response and coordinated control mode. High coordination and asynchronous response (without communications) guarantee the frequency regulation in various disturbances and avoid the secondary impact. Moreover, the more CEEs participate in response, the more advantages will achieve. According to the proposed control strategy, corresponding simulation schemes have been designed. The feasibility and effectiveness of the control strategy has been proved by simulations and contrastive analysis, such as big disturbance and continuous random disturbances in power system.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average