
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improvement of RES hosting capacity using a central energy storage system
High penetration of renewable energy sources (RESs) in distribution systems leads to reverse active power and voltage rise in low voltage (LV) grids, which limits the hosting capacity. Energy storage systems (ESSs) have been used to improve the hosting capacity by decreasing the reverse active power in some literature. ESSs can still improve the hosting capacity more by providing reactive power. The reactive power shows a little effect in existing researches, because they have mostly simulate LV grids without modeling transformers. However, the high reactance of the transformer magnifies the effectiveness of the reactive power control even more than the active power in some buses. This paper develops an optimal method for placement, sizing, and active and reactive power control of a central ESS to improve the hosting capacity. The simulation results in highly RES penetrated grids at Germany show the effectiveness of the proposed method.
Other Electrical Engineering, Electronic Engineering, Information Engineering, Reactive power control, hosting capacity, Reactive power, energy storage system, State of charge, Production, Batteries, reactive power control, Voltage control, Annan elektroteknik och elektronik, Distribution grids, renewable energy sources
Other Electrical Engineering, Electronic Engineering, Information Engineering, Reactive power control, hosting capacity, Reactive power, energy storage system, State of charge, Production, Batteries, reactive power control, Voltage control, Annan elektroteknik och elektronik, Distribution grids, renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
