
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Clustering of Usage Profiles for Electric Vehicle Behaviour Analysis
Accurately predicting the behaviour of electric vehicles is going to be imperative for network operators. In order for vehicles to participate in either smart charging schemes or providing grid services, their availability and charge requirements must be forecasted. Their relative novelty means that data concerning electric vehicles is scarce and biased, however we have been collecting data on conventional vehicles for many years. This paper uses cluster analysis of travel survey data from the UK to identify typical conventional vehicle usage profiles. To this end, we determine the feature vector, introduce an appropriate distance metric, and choose a number of clusters. Five clusters are identified, and their suitability for electrification is discussed. A smaller data set of electric vehicles is then used to compare the current electric fleet behaviour with the conventional one.
- City, University of London United Kingdom
- University of Oxford United Kingdom
- University of Oxford United Kingdom
- City, University of London United Kingdom
HE, TL, TK
HE, TL, TK
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
