
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evolving smart meter data driven model for short-term forecasting of electric loads
Short-term forecasting of electric loads is an essential function required by Smart Grids. Today increasing amount of smart metering data is available enabling the development of enhanced data-driven models for short-term load forecasting. Until now, a plethora of models have been developed ranging from simple linear regression models to more advanced models such as (artificial) neural networks (NNs) and support vector machines (SVMs). Despite the relatively high accuracy obtained, the acceptance of purely data-driven models such as NN models is still remained limited due to their complexity and nontransparent nature. Therefore it is important to develop optimization schemes, which can be used to facilitate the selection of appropriate model structure resulting good forecasting accuracy with low complexity. This study presents an optimization scheme based on multi-objective genetic algorithm (GA) for designing data-driven models for short-term forecasting of electric loads. The optimization scheme is demonstrated for designing the conventional NN/MLP model using real smart metering data and weather measurements. The optimal NN model structures are identified and analyzed in terms of model complexity and forecasting accuracy.
- University of Eastern Finland Finland
- Tampere University of Technology Finland
- Tampere University Finland
ta113, ta213, 213 Electronic, automation and communications engineering, electronics, load forecasting, data mining, genetic algorithms, SDG 7 - Affordable and Clean Energy, smart metering
ta113, ta213, 213 Electronic, automation and communications engineering, electronics, load forecasting, data mining, genetic algorithms, SDG 7 - Affordable and Clean Energy, smart metering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
