Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://repository.t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://repository.tudelft.nl/...
Conference object
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/itec51...
Conference object . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
TU Delft Repository
Conference object . 2021
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aggregated Impact of EV Charger Type and EV Penetration level in Improving PV Integration in Distribution Grids

Authors: Wagh, Saumitra (author); Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author);

Aggregated Impact of EV Charger Type and EV Penetration level in Improving PV Integration in Distribution Grids

Abstract

Mass deployment of Electric Vehicles (EVs) can improve the loading characteristics of low voltage distribution grids with high Photovoltaic (PV) penetration. This impact is investigated in the paper from two point of views, namely, the EV charger type and the EV penetration level. Based on the measured usage data for home, public and semi-public EV chargers, it is highlighted that the ratio of the number of these charger types can influence the grid level impact of PV penetration. Using Monte-Carlo method with aggregated power balance model, it is suggested that the increase in percentage of public and semi-public chargers relative to home chargers can improve self-consumption of PV energy in the grid, thereby reducing the power mismatch due to excess local generation. A PowerFactory based simulation with real measurement based data on real German distribution grids reveals that the grids have no risk of congestion at all with 80% EV penetration, allowing for a possibility even higher EV penetration in the future. Furthermore, with the considered uncontrolled EV charging, it is observed that the grids experience reverse power flows due to excess PV generation. This excess PV energy reduces by about 5% with high EV penetration, indicating a future potential for targeted smart charging application for improving these benchmarked results.

Country
Netherlands
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 6
  • 7
    views
    6
    downloads
    Data sourceViewsDownloads
    TU Delft Repository76
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Top 10%
Average
Top 10%
7
6