

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Aggregated Impact of EV Charger Type and EV Penetration level in Improving PV Integration in Distribution Grids
Mass deployment of Electric Vehicles (EVs) can improve the loading characteristics of low voltage distribution grids with high Photovoltaic (PV) penetration. This impact is investigated in the paper from two point of views, namely, the EV charger type and the EV penetration level. Based on the measured usage data for home, public and semi-public EV chargers, it is highlighted that the ratio of the number of these charger types can influence the grid level impact of PV penetration. Using Monte-Carlo method with aggregated power balance model, it is suggested that the increase in percentage of public and semi-public chargers relative to home chargers can improve self-consumption of PV energy in the grid, thereby reducing the power mismatch due to excess local generation. A PowerFactory based simulation with real measurement based data on real German distribution grids reveals that the grids have no risk of congestion at all with 80% EV penetration, allowing for a possibility even higher EV penetration in the future. Furthermore, with the considered uncontrolled EV charging, it is observed that the grids experience reverse power flows due to excess PV generation. This excess PV energy reduces by about 5% with high EV penetration, indicating a future potential for targeted smart charging application for improving these benchmarked results.
- Delft University of Technology Netherlands
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 7 download downloads 6 - 7views6downloads
Data source Views Downloads TU Delft Repository 7 6


