
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction model of driving behavior based on traffic conditions and driver types
We investigate the driving behavior differences at unsignalized intersections between expert and nonexpert drivers. By analyzing real-world driving data, significant differences were seen in pedal operations but not in steering operations. Easing accelerator behaviors before entering unsignalized intersections were especially seen more often in expert driving. We propose two prediction models for driving behaviors in terms of traffic conditions and driver types: one is based on multiple linear regression analysis, which predicts whether the driver will steer, ease up on the accelerator, or brake. The second predicts driver decelerating intentions using a Bayesian Network. The proposed models could predict the three driving actions with over 70% accuracy, and about 50% of decelerating intentions were predicted before entering unsignalized intersections.
- Nagoya University Japan
- Nagoya University Japan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
