
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Diode Characteristics of a Super-Steep Subthreshold Slope PN-Body Tied SOI-FET for Energy Harvesting Applications

Diode Characteristics of a Super-Steep Subthreshold Slope PN-Body Tied SOI-FET for Energy Harvesting Applications
In this paper, the diode characteristics of our newly proposed super-steep subthreshold slope “PN-body tied (PNBT) silicon-on-insulator field-effect transistor” are presented, and compared with conventional diodes. We report that the device possesses super-steep characteristics, low leakage current, and sharp turn-on characteristics, even in the ultralow voltage range (50 mV). These indicate that the PNBT diode can potentially be used in high-efficiency rectification for energy harvesting, particularly in situations where there is ultralow input power. In addition, the hysteresis characteristics and the slight shift of the voltage at zero current are confirmed as specific characteristics of PNBT diodes.
Energy harvesting, Electrical engineering. Electronics. Nuclear engineering, SOI MOSFET, steep subthreshold slope, TK1-9971
Energy harvesting, Electrical engineering. Electronics. Nuclear engineering, SOI MOSFET, steep subthreshold slope, TK1-9971
7 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
