Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/jiot.2...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Reinforcement Learning for Economic Dispatch of Virtual Power Plant in Internet of Energy

Authors: Lin Lin; Xin Guan; Yu Peng; Ning Wang; Sabita Maharjan; Tomoaki Ohtsuki;

Deep Reinforcement Learning for Economic Dispatch of Virtual Power Plant in Internet of Energy

Abstract

With the high penetration of large-scale distributed renewable energy generation, the power system is facing enormous challenges in terms of the inherent uncertainty of power generation of renewable energy resources. In this regard, virtual power plants (VPPs) can play a crucial role in integrating a large number of distributed generation units (DGs) more effectively to improve the stability of the power systems. Due to the uncertainty and nonlinear characteristics of DGs, reliable economic dispatch in VPPs requires timely and reliable communication between DGs, and between the generation side and the load side. The online economic dispatch optimizes the cost of VPPs. In this article, we propose a deep reinforcement learning (DRL) algorithm for the optimal online economic dispatch strategy in VPPs. By utilizing DRL, our proposed algorithm reduced the computational complexity while also incorporating large and continuous state space due to the stochastic characteristics of distributed power generation. We further design an edge computing framework to handle the stochastic and large-state space characteristics of VPPs. The DRL-based real-time economic dispatch algorithm is executed online. We utilize real meteorological and load data to analyze and validate the performance of our proposed algorithm. The experimental results show that our proposed DRL-based algorithm can successfully learn the characteristics of DGs and industrial user demands. It can learn to choose actions to minimize the cost of VPPs. Compared with the deterministic policy gradient algorithm and DDPG, our proposed method has lower time complexity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%