
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reinforcement-Learning-Based Offloading for RIS-Aided Cloud–Edge Computing in IoT Networks: Modeling, Analysis, and Optimization

The rapid advancement of wireless communication and artificial intelligence (AI) has led to a plethora of emerging applications that require exceptional connectivity, minimal latency, and substantial computing resources. The widespread adoption of cloud-edge intelligence is propelling the development of future networks capable of supporting intelligent computing. Mobile edge computing (MEC) technology facilitates the movement of computing resources and storage to the network’s edge, enabling cost-effective offloading of computational tasks for related applications which needs for reduced latency and improved energy efficiency. However, the offloading efficiency is hindered by limitations of wireless transmission capacity. This paper aims to address this issue by integrating reconfigurable intelligent surfaces (RISs) into a cell-free network within an intelligent cloud-edge system. The core idea is to strategically deploy passive RISs around base stations (BSs) to reconstruct the transmission channel and improve the corresponding capacity. Subsequently, we formulate an optimal problem involving joint beamforming for RISs and BSs, which is characterized by non-convexity and complexity. To tackle this challenge, we employ an alternating optimization scheme to ensure the effectiveness of joint beamforming. In particular, deep reinforcement learning (DRL) is leveraged to reduce the computational complexity involved in optimizing task offloading. Additionally, Lyapunov optimization is utilized to model the latency queue and improve the learning efficiency of the offloading framework. We conduct comprehensive evaluations on the wireless system’s capacity, average latency, and energy consumption, considering the integration of RIS with the DRL offloading framework. Experimental results demonstrate that our proposed scheme achieves superior efficiency and robustness.
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Hosei University Japan
- King Saud University Saudi Arabia
- University of Technology Sydney Australia
- University of Maryland, Baltimore United States
Optimization, Energy consumption, cloud-edge offloading, Internet of Things, Reinforcement learning, Task analysis, Wireless communication, Cloud computing, resource allocation, reconfigurable intelligent surface, Reconfigurable intelligent surfaces
Optimization, Energy consumption, cloud-edge offloading, Internet of Things, Reinforcement learning, Task analysis, Wireless communication, Cloud computing, resource allocation, reconfigurable intelligent surface, Reconfigurable intelligent surfaces
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
