
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Broadband Polarization-Insensitive Metamaterial Perfect Absorbers Using Topology Optimization

A novel scheme for a perfect hyperbolic metamaterial (HMM) absorber is proposed, and experimental verification is provided. It has been shown previously that tapered HMM stacks can provide adiabatic waveguiding over a wide spectral range and thus are an ideal opaque absorber. Here, nontapered shape-optimized HMM absorbers are proposed, which facilitates the fabrication and promotes the large-area applications such as thermophotovoltaics (TPV). In the synthesis of the optimal patterns, we use 5-harmonic rigorously coupled wave analysis (RCWA) and experimental trials to shorten the trial-and-error time. The best pattern provides an averaged broadband experimental absorption of 88.38% over λ = 1 μm to λ = 2 μm, which is comparable to the state-of-the-art experimental effort using tapered HMM. The nontapered nature can be easier to fabricate from the semiconductor processing viewpoint. The physics behind the pattern-optimized HMM cavity is the broadband light coupling by the air-cavity and the unbounded photonic density of the states (PDOS) associated with the HMM. The topology optimized air cavity effectively couples the incident photons into the metal-dielectric stacking, eliminating the need of sidewall tapers. We believe the proposed topology-optimization methodology benefits the future design of compact metamaterial perfect absorbers (MPA), sensors, antenna, and thermophotovoltaic emitters, and absorbers.
- National Chiao Tung University Taiwan
- National Chiao Tung University Taiwan
QC350-467, Optics. Light, plasmonics, TA1501-1820, photovoltaic, silicon nanophotonics, metamaterials, Applied optics. Photonics, Diffractive optics
QC350-467, Optics. Light, plasmonics, TA1501-1820, photovoltaic, silicon nanophotonics, metamaterials, Applied optics. Photonics, Diffractive optics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
