
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Route Toward High-Efficiency Single-Phase Cu$_{\bf 2}$ZnSn(S,Se)$_{\bf 4}$ Thin-Film Solar Cells: Model Experiments and Literature Review

Thin-film chalcogenide kesterites Cu2ZnSnS4 and Cu2 ZnSnSe4 (CZTSSe) are promising candidates for the next-generation thin-film solar cells. They exhibit a high natural abundance of Cu, Zn, Sn and S2, a high absorption coefficient, and a tunable direct bandgap between 1.0 and 1.5 eV. A prerequisite for the use of CZTSSe as absorber layers in photovoltaic applications on large scales is a detailed knowledge of the formation reaction. Recently, we have shown that a decomposition/formation equilibrium governs the formation reaction. The presence of Sn(S,Se) during the high-temperature preparation steps is essential to prevent decomposition. This improves the solar cell efficiency from 0.02% to 6.1%. In this paper, we show that the decomposition is universal. Absorbers produced by high-temperature coevaporation and samples produced by low-temperature precursor fabrication followed by annealing in a tube furnace in S or Se atmosphere are compared in order to elucidate that in all cases, the loss of Sn(S,Se) forms a degraded surface region. We demonstrate that the degraded surface of CZTSe absorbers contains grains of ZnSe. These new insights can be used to explain why some of the synthesis routines described in the literature yield much better efficiencies than others.
- University of Luxembourg Luxembourg
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).83 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
