Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crack Statistic for Wafer-Based Silicon Solar Cell Modules in the Field Measured by UV Fluorescence

Authors: Marc Köntges; Sarah Kajari-Schröder; Iris Kunze;

Crack Statistic for Wafer-Based Silicon Solar Cell Modules in the Field Measured by UV Fluorescence

Abstract

We use the fluorescence effect of the lamination material of photovoltaic (PV) modules to detect cracks in wafer-based solar cells in a power plant. For this purpose, the PV modules are irradiated by ultraviolet (UV) light, and the fluorescence light is measured by a camera. The measurement is realized in the dark. This new application of the fluorescence method allows new insight into cracks of a huge amount of PV modules during service life without remounting or touching the PV modules. We found that the frequency distribution of so-called cross cracks is almost homogenous in the PV modules. These cracks are frequently induced by crumbs or needle-shaped production equipment and not introduced after production. We show that the measured distribution of “cross cracks” in the PV modules fits to the binominal frequency distribution, as expected for production-induced cell failures. The measured crack frequency distribution for other crack types is compared with a finite-element simulation of a simplified PV module. We find that the lateral crack distribution correlates with the simulated strain distribution induced by module vibrations. In total, we found that 4.1% of the solar cells in the PV modules show at least one crack.

Powered by OpenAIRE graph
Found an issue? Give us feedback