
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells

Recently, several parameters relevant for modeling crystalline silicon solar cells were improved or revised, e.g., the international standard solar spectrum or properties of silicon such as the intrinsic recombination rate and the intrinsic carrier concentration. In this study, we analyzed the influence of these improved state-of-the-art parameters on the limiting efficiency for crystalline silicon solar cells under 1-sun illumination at 25°C, by following the narrow-base approximation to model ideal solar cells. We also considered bandgap narrowing, which was not addressed so far with respect to efficiency limitation. The new calculations that are presented in this study result in a maximum theoretical efficiency of 29.43% for a 110-μm-thick solar cell made of undoped silicon. A systematic calculation of the I-V parameters as a function of the doping concentration and the cell thickness together with an analysis of the loss current at maximum power point provides further insight into the intrinsic limitations of silicon solar cells.
- University of Freiburg Germany
- Fraunhofer Institute for Solar Energy Systems Germany
- Fraunhofer Society Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).801 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
