Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2014 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optics and Light Trapping for Tandem Solar Cells on Silicon

Authors: Lal, Niraj; White, Thomas; Catchpole, Kylie;

Optics and Light Trapping for Tandem Solar Cells on Silicon

Abstract

The rapid advancement of thin-film photovoltaic (PV) technology increases the real possibility of large-area Si-based tandems reaching 30% efficiency, although light in these devices must be managed carefully. We identify the optical requirements to reach high efficiencies. Strict conditions are placed on material parasitic absorption and transmission of contacts: Absorption of 20% of sub-bandgap light leads to the required top-cell efficiencies of 18% at a bandgap of 1.5 eV to break even and 23% to reach tandem efficiencies of 30%. Perovskite-silicon tandem cells present the first low-cost devices capable of improving standalone 25% efficiencies and we quantify the efficiency gains and reduced thickness afforded by wavelength-selective light trapping. An analytical formalism for Lambertian tandem light trapping is introduced, yielding stringent requirements for wavelength selectivity. Applying these principles to a perovskite-based top cell characterized by strong absorption and high luminescence efficiency we show that tandem efficiencies greater than 30% are possible with a bandgap of E g = 1.55 eV and carrier diffusion lengths less than 100 nm. At an optimal top-cell bandgap of 1.7 eV, with diffusion lengths of current vapor-deposited CH 3 NH 3 PbI x Cl 1-x perovskites, we show that tandem efficiencies beyond 35% are achievable with careful light management.

Country
Australia
Keywords

535

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 1%
Top 10%
Top 1%
Green
bronze
Related to Research communities
Energy Research