
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optics and Light Trapping for Tandem Solar Cells on Silicon

handle: 1885/75821
Optics and Light Trapping for Tandem Solar Cells on Silicon
The rapid advancement of thin-film photovoltaic (PV) technology increases the real possibility of large-area Si-based tandems reaching 30% efficiency, although light in these devices must be managed carefully. We identify the optical requirements to reach high efficiencies. Strict conditions are placed on material parasitic absorption and transmission of contacts: Absorption of 20% of sub-bandgap light leads to the required top-cell efficiencies of 18% at a bandgap of 1.5 eV to break even and 23% to reach tandem efficiencies of 30%. Perovskite-silicon tandem cells present the first low-cost devices capable of improving standalone 25% efficiencies and we quantify the efficiency gains and reduced thickness afforded by wavelength-selective light trapping. An analytical formalism for Lambertian tandem light trapping is introduced, yielding stringent requirements for wavelength selectivity. Applying these principles to a perovskite-based top cell characterized by strong absorption and high luminescence efficiency we show that tandem efficiencies greater than 30% are possible with a bandgap of E g = 1.55 eV and carrier diffusion lengths less than 100 nm. At an optimal top-cell bandgap of 1.7 eV, with diffusion lengths of current vapor-deposited CH 3 NH 3 PbI x Cl 1-x perovskites, we show that tandem efficiencies beyond 35% are achievable with careful light management.
- Australian National University Australia
- Centre for Sustainable Energy Use in Food United Kingdom
535
535
15 Research products, page 1 of 2
- 2002IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 1995IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).109 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
