
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Direct Evaluation of Defect Distributions From Admittance Spectroscopy

Evaluating interfering capacitance steps in admittance spectroscopy for solar cell defect analysis is still a problem which needs to be solved. While the common analysis developed by Walter et al.[1] is capable of extracting defect distributions from the capacitance data, it results in erroneous defect densities in the presence of overlapping capacitance steps. We derive an expression for the capacitance step caused by defects with a density of states distributed in energy. By adding several of these defect distributions, interfering capacitance steps can be described. Thus, it is possible to fit the entire capacitance spectrum simultaneously for all temperatures. We apply the presented method to Cu 2 ZnSnSe 4 -based solar cells with power conversion efficiencies between 5% and 7%. Comparing the obtained defect parameters with the ones obtained by the method from Walter et al. reveals that the Walter method overestimates the defect densities in the case of overlapping capacitance steps.
- University of Luxembourg Luxembourg
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
