
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wide-Bandgap InAs/InGaP Quantum-Dot Intermediate Band Solar Cells

Current prototypes of quantum-dot intermediate band solar cells suffer from voltage reduction due to the existence of carrier thermal escape. An enlarged sub-bandgap EL would not only minimize this problem, but would also lead to a bandgap distribution that exploits more efficiently the solar spectrum. In this work we demonstrate InAs/InGaP QD-IBSC prototypes with the following bandgap distribution: EG = 1.88 eV, EH = 1.26 eV and EL > 0.4 eV. We have measured, for the first time in this material, both the interband and intraband transitions by means of photocurrent experiments. The activation energy of the carrier thermal escape in our devices has also been measured. It is found that its value, compared to InAs/GaAs-based prototypes, does not follow the increase in EL. The benefits of using thin AlGaAs barriers before and after the quantum-dot layers are analyzed.
- University of London United Kingdom
- Middlesex University United Kingdom
- Universidad Politécnica de Madrid Spain
Energías Renovables, Física
Energías Renovables, Física
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
