
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved Photocurrent in Cu(In,Ga)Se2 Solar Cells: From 20.8% to 21.7% Efficiency with CdS Buffer and 21.0% Cd-Free

New processing developments in the Cu(In,Ga)Se2 (CIGS)-based solar cell technology have enabled best cell efficiencies to exceed 21%. The key innovation involves the alkali post-deposition treatment (PDT) of the CIGS film. Furthermore, the range of optimal CIGS growth parameters and the minimal thickness of the CdS buffer layer is affected by the process modifications. In 2013, we reported a 20.8% record device with PDT. Later optimizations, e.g., in the composition profile and CdS buffer layer thickness as discussed in this study, enabled us to increase the photocurrent density with only a slight loss in open-circuit voltage and unchanged fill factor, resulting in the current world record of 21.7% efficiency. Furthermore, a record efficiency of 21.0% could be achieved with a Cd-free Zn(O,S) buffer layer. This contribution presents measurements, simulations, and a discussion of the photocurrent increase.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).178 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
