Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Thermal Processes Driving Laser Welding of Aluminum Deposited on Glass Substrates for Module Interconnection of Silicon Solar Cells

Authors: Henning Schulte-Huxel; Sarah Kajari-Schröder; Rolf Brendel;

Analysis of Thermal Processes Driving Laser Welding of Aluminum Deposited on Glass Substrates for Module Interconnection of Silicon Solar Cells

Abstract

Laser welding of thin Al layers offers a silver-free and highly flexible option for the interconnection of Al-metallized solar cells. Welding requires the melting of the Al layers in order to form a reliable electrical and mechanical contact. Here, we investigate the process driving the melt front of the aluminum, which is attached to a transparent substrate, toward the interface between the two Al layers. In experiments, we observe two different mechanisms depending on the thickness of the irradiated layer. In the case of Al layers thinner than 5 μm, a melt-through of the Al-layer is observed, whereas for thicker layers, thermal expansion causes a breakage of the surface and ejection of molten Al, which enables the contact formation. Using simulations that are based on the finite-element method, we instigate both mechanisms. The simulation results match the experimental observations within the measurement uncertainty. In case of thin layers, the simulation shows that the process is limited by thermal diffusion. For thicker Al layers, the onset of melting on the irradiated side initiates the breakage of the surface and the ejection of the aluminum.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research