Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells

Authors: Seif, Johannes P.; Descoeudres, Antoine; Nogay, Gizem; Hanni, Simon; De Nicolas, Silvia Martin; Holm, Niels; Geissbuhler, Jonas; +6 Authors

Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells

Abstract

Carrier collection in silicon heterojunction (SHJ) solar cells is usually achieved by doped amorphous silicon layers of a few nanometers, deposited at opposite sides of the crystalline silicon wafer. These layers are often defect-rich, resulting in modest doping efficiencies, parasitic optical absorption when applied at the front of solar cells, and high contact resistivities with the adjacent transparent electrodes. Their substitution by equally thin doped nanocrystalline silicon layers has often been argued to resolve these drawbacks. However, low-temperature deposition of highly crystalline doped layers of such thickness on amorphous surfaces demands sophisticated deposition engineering. In this paper, we review and discuss different strategies to facilitate the nucleation of nanocrystalline silicon layers and assess their compatibility with SHJ solar cell fabrication. We also implement the obtained layers into devices, yielding solar cells with fill factor values of over 79% and efficiencies of over 21.1%, clearly underlining the promise this material holds for SHJ solar cell applications.

Country
Switzerland
Keywords

nanocrystalline silicon, Microcrystalline silicon, solar cells, silicon heterojunctions (SHJs)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Funded by
Related to Research communities
Energy Research