
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Coevaporated KInSe2: A Fast Alternative to KF Postdeposition Treatment in High-Efficiency Cu(In,Ga)Se2Thin Film Solar Cells

Coevaporated KInSe2: A Fast Alternative to KF Postdeposition Treatment in High-Efficiency Cu(In,Ga)Se2Thin Film Solar Cells
Cu(In,Ga)Se2-based thin film solar cells have reached 22.3% energy conversion efficiency. This outstanding level of performance has been made possible by the use of a so-called potassium fluoride postdeposition treatment (KF-PDT) after the absorber synthesis. Such a treatment, consisting of evaporating KF under Se atmosphere, has been suggested to enhance the formation of a KInSe2 surface layer. In this paper, we propose an alternative to the standard KF-PDT, in which we simultaneously evaporate KF and In under Se atmosphere. We compare by X-ray photoemission spectroscopy the modified absorber surfaces in both cases and discuss the advantages of this alternative in terms of robustness and rapidity of the process.
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], [PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
6 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
