
Found an issue? Give us feedback
IEEE Journal of Photovoltaics
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Ultrathin Silicon Solar Cell Loss Analysis

Authors: Jianshu Han; Malcom David Abbott; Phillip G. Hamer; Bram Hoex; Lu Wang; Anthony Lochtefeld; Allen M. Barnett;
Abstract
A detailed loss analysis is presented for a 15.9% large area ultrathin silicon (UTSi) solar cell. The loss analysis is based on a comprehensive study of the electrical and optical parameters of the champion solar cell. The results indicate that the UTSi solar cell has an efficiency potential of 19.9% using currently available technologies and is capable of achieving 22.2% efficiency in the long run.
Related Organizations
- University of Oxford United Kingdom
- UNSW Sydney Australia
- University of Oxford United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
2
Average
Average
Average
Beta
Fields of Science (4) View all
Fields of Science
Related to Research communities
Energy Research