Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revealing and Identifying Laser-Induced Damages in CIGSe Solar Cells by Photoluminescence Spectroscopy

Authors: Sven Ring; Rutger Schlatmann; Christian Wolf; Guillermo A. Farias Basulto; Christof Schultz; Bert Stegemann;

Revealing and Identifying Laser-Induced Damages in CIGSe Solar Cells by Photoluminescence Spectroscopy

Abstract

Laser-based patterning for serial interconnection of chalcopyrite (i.e., Cu(In ${}_{\rm{x}},\text{Ga}_{\rm{1-x}}$ )Se2 or CIGSe) solar cells was obtained by 1) laser ablation using picosecond (ps) pulses, 2) local phase transformation using nanosecond (ns) laser pulses, and 3) conventional needle-based patterning. All three patterning approaches cause a modification of the material properties in the vicinity of the actual P2 scribing lines, which affects and limits the electrical functionality of the interconnection, and thus has to be considered for positioning the P3 scribe. Thus, the extension and the properties of the affected zone aside the P2 scribe was investigated through spectral and spatial photoluminescence (PL). From the depletion of the PL intensity when approaching the scribing line and a peak shift analysis it is concluded that the laser-affected zone is distinctively larger than visual inspections suggest. Even putatively ultrashort, nonthermal ps pulses cause material modifications which might be facilitating recombination losses and thus limiting solar cell efficiencies. For ps laser patterning the affected area is even larger than for the ns laser patterning, due to a modification of the band structure and to thermal decomposition. Evolving subpeaks at the low energy tails are found to originate from Cu-related flat defect levels, i.e., Cu vacancies ( $V_{{\rm{Cu}}}$ ) and antisites (Cu In), created upon laser impact. These findings provide insights into laser-based material modification and provide beneficial information for minimizing the dead area resulting from laser-based monolithic interconnection.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Related to Research communities
Energy Research