Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.24406/pu...
Other literature type . 2018
Data sources: Datacite
IEEE Journal of Photovoltaics
Article . 2018 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Edge Recombination in Silicon Solar Cells

Authors: Andreas Fell; Jonas Schon; Matthias Muller; Nico Wohrle; Martin C. Schubert; Stefan W. Glunz;

Modeling Edge Recombination in Silicon Solar Cells

Abstract

A new approach to model edge recombination in silicon solar cells is presented. The model accounts for recombination both at the edge of the quasi-neutral bulk as well as at an exposed space-charge-region (SCR), the latter via an edge-length-specific diode property with an ideality factor of 2: a localized J02, edge. The model is implemented in Quokka3, where the $J_{02,edge}$ is applied locally to the edges of the three-dimensional geometry, imposing less simplifying assumptions compared with the common way of applying it as an external diode. A “worst-case” value for $J_{02,{\rm{edge}}}$ , assuming very high surface recombination, is determined by fitting to full detailed device simulations which resolve the SCR recombination. A value of $\sim \text{19 nA/cm}$ is found, which is shown to be largely independent of device properties. The new approach is applied to model the impact of edge recombination on full cell performance for a substantial variety of device properties. It is found that recombination at the quasi-neutral bulk edge does not increase the $J_{02}$ of the dark J–V curve, but still shows a nonideal impact on the light J–V curve similar to the SCR recombination. This needs to be considered in the experimental evaluation of edge losses, which is commonly performed via fitting $J_{02}$ to dark J–V curves.

Country
Germany
Keywords

118

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research