Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Detailed Study on Light-Induced Degradation of Cz-Si PERC-Type Solar Cells: Evidence of Rear Surface-Related Degradation

Authors: Axel Herguth; Christian Derricks; David Sperber;

A Detailed Study on Light-Induced Degradation of Cz-Si PERC-Type Solar Cells: Evidence of Rear Surface-Related Degradation

Abstract

A light-induced degradation phenomenon of unknown origin in p-type Cz-Si passivated emitter and rear cell (PERC)-type solar cells is thoroughly investigated by collating results from different measurement techniques and predictions from various simulations. The observed degradation manifests in slight losses in j sc , strong losses in V oc, and devastating losses in FF, and thus massively impacts efficiency. It is found that the series resistance degrades significantly due to a degradation of front contact resistance. This, however, does not explain losses in V oc and j sc , which are attributed to the degradation of a different cell component. Neither a degradation by defect formation in the space charge region, nor the emitter, nor the bulk is found to consistently explain the observations. Only a rear surface-related degradation mechanism explains consistently all experimental findings.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback