Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Multijunction Solar Cells by Nonlocal Tunneling and Subcell Analysis

Authors: Yiming Liu; Mehrad Ahmadpour; Jost Adam; Jakob Kjelstrup-Hansen; Horst-Gunter Rubahn; Morten Madsen;

Modeling Multijunction Solar Cells by Nonlocal Tunneling and Subcell Analysis

Abstract

Multijunction solar cells have been demonstrated as an efficient approach to overcome the Shockley–Queisser limit and achieve high efficiency. However, cost reduction and further development of high-efficiency tandem solar cells require many device optimization studies and ask for heavy theoretical assistance. In this paper, we present a versatile alternative via an updated version of a free solar cell simulation software, wxAMPS, which incorporates a nonlocal band-to-band tunneling model and several specific physical mechanisms into the solver to better describe the device behavior of tandem solar cells. The simulation results are compared against a commercial technology computer-aided design program, showing satisfactory agreement. Moreover, a useful feature, subcell analysis, has been developed to give better insight into the individual subcell performance of the devices and to provide guidance for current matching. The algorithm used in the subcell analysis, which avoids the complexity in treating nonlocal behaviors of tunneling junctions, notably accelerates the tandem solar cell simulation, and thus allows implementing batch simulation for device optimization. The results of the subcell analysis have been used to experimentally optimize subcell thicknesses and successfully improved the efficiency of the tandem solar cell.

Country
Denmark
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research