
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Study of the Interface in a GaP/Si Heterojunction Solar Cell

We have investigated the GaP/Si heterojunction interface for application in silicon heterojunction solar cells. We performed X-ray photoelectron spectroscopy (XPS) on thin layers of GaP grown on Si by metal organic chemical vapor deposition and molecular beam epitaxy. The conduction band offset was determined to be 0.9 ± 0.2 eV, which is significantly higher than predicted by Anderson's rule (0.3 eV). XPS also revealed the presence of Ga–Si bonds at the interface that are likely to be the cause of the observed interface dipole. Via cross-sectional Kelvin probe force microscopy ( x -KPFM), we observed a charge transport barrier at the Si/GaP interface which is consistent with the high-conduction band offset determined by XPS and explains the low open-circuit voltage and low fill factor observed in GaP/Si heterojunction solar cells.
- Arizona State University United States
- California Institute of Technology United States
X-ray photoelectron spectroscopy, 530, 620, interface, silicon heterojunction (SHJ) solar cells, Kelvin probe (KP) force microscopy, Band alignment
X-ray photoelectron spectroscopy, 530, 620, interface, silicon heterojunction (SHJ) solar cells, Kelvin probe (KP) force microscopy, Band alignment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
