
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing the Impact of Thermal Profiles on the Elimination of Light- and Elevated-Temperature-Induced Degradation

Light- and elevated-temperature-induced degradation (LeTID) in p-type multicrystalline silicon has a severe impact on the effective minority carrier lifetime of silicon and remains a crucial challenge for solar cell manufacturers. The precise cause of the degradation is yet to be confirmed; however, several approaches have been presented to reduce the extent of degradation. This paper presents insights on the impact of thermal budgets and cooling rates during post-firing illuminated anneals and their role in changing the lifetime and mitigating LeTID for thermal processes between 350 and 500 °C. We demonstrate that the thermal budget of these processes plays a crucial role in LeTID suppression and that the cooling rate only plays a role during short treatment durations (≤1 min). For the parameter space studied, we show that annealing for an appropriate time and temperature can both enhance the minority carrier lifetime and completely suppress the LeTID, with the injection-dependent Shockley–Read–Hall lifetime analysis indicating that the recombination activity of the LeTID defects in the bulk has been eliminated. Finally, this paper demonstrates a process that results in a stable lifetime after 800 h of conventional light-soaking at 75 °C.
- UNSW Sydney Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
