Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Phot...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Photovoltaics
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2019
License: CC BY NC ND
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
IEEE Journal of Photovoltaics
Article . 2019 . Peer-reviewed
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High Temperature Annealing of ZnO:Al on Passivating POLO Junctions: Impact on Transparency, Conductivity, Junction Passivation, and Interface Stability

Authors: Tobias F. Wietler; Byungsul Min; Sina Reiter; Yevgeniya Larionova; Rolf Reineke-Koch; Frank Heinemeyer; Rolf Brendel; +4 Authors

High Temperature Annealing of ZnO:Al on Passivating POLO Junctions: Impact on Transparency, Conductivity, Junction Passivation, and Interface Stability

Abstract

We investigate the enhancement in transparency and conductivity of aluminum doped zinc oxide (ZnO:Al) layers upon high-temperature annealing and its impact on contact resistance, as well as, on passivation properties of carrier selective junctions based on doped polycrystalline Si on a passivating silicon oxide (POLO). The temperature stability of these junctions allows annealing of the ZnO:Al/POLO combination up to 600 °C. We prepare ZnO:Al films by dc magnetron sputtering at room temperature. We determine the complex refractive index of ZnO:Al in dependence of post-deposition annealing (PDA) temperature by spectroscopic ellipsometry. High-temperature annealing improves the conductivity and reduces the absorption within ZnO:Al. The optical losses in a ZnO:Al/POLO stack are rather limited by the poly-Si layer than by the ZnO:Al. The sheet resistance improves from roughly 20 000 Ω/sq for 80 nm thick as-deposited ZnO:Al films to 72 Ω/sq after fast firing at 600 °C. At the same time, PDA cures the damage induced in the POLO junctions during ZnO:Al deposition. After PDA with AlxOy capping layers, the passivation quality even surpasses the initial level. A transmission electron microscopy analysis of the interface between the ZnO:Al and the underlying poly-Si reveals the formation of a silicon oxide like interfacial layer after PDA at 400 °C. This interfacial layer causes a high contact resistivity of the metal/ZnO:Al/POLO-junction and could limit the thermal budget for cell processing. Our results indicate that after successful process adjustment, ZnO:Al could substitute In-based transparent conductive oxides on POLO cells for cost reasons, as well as, enable a high efficiency potential.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 27
    download downloads 301
  • 27
    views
    301
    downloads
    Data sourceViewsDownloads
    ZENODO27301
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
18
Top 10%
Average
Top 10%
27
301
Green
hybrid