
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Degradation and Recovery of n-Type Multi-Crystalline Silicon Under Illuminated and Dark Annealing Conditions at Moderate Temperatures

Degradation and Recovery of n-Type Multi-Crystalline Silicon Under Illuminated and Dark Annealing Conditions at Moderate Temperatures
Abstract—Recently, an n-type multi-crystalline silicon (mc-Si) was observed to be susceptible to degradation under illumination at elevated temperatureswith similarities to carrier-induced degradation in p-type mc-Si. In this study, we demonstrate degradation and regeneration of the effective lifetime of non-diffused n-type mc-Si wafers using illuminated and dark annealing conditions at moderate temperatures. Under illuminated annealing conditions, the degradation and regeneration rates of the n-type mc-Si are observed to be slower than those of the p-type mc-Si; however, the opposite trend was observed under dark annealing conditions. The carrier-induced degradation kinetics of the n-type wafers can be described by degradation and regeneration that occur simultaneously, and the activation energies have been identified to be 1.23 ± 0.16 eV for the degradation process and 1.34 ± 0.08 eV for the regeneration. Surprisingly, no degradation was observed in n-type mc-Si under dark annealing above 160 °C. Rather, at these conditions, a two-stage improvement in the lifetime was observed. Although degradation occurs after a subsequent laser treatment, the stable lifetime at the end of the degradation is still slightly higher than its initial value.
- Delft University of Technology Netherlands
- UNSW Sydney Australia
Multi-crystalline silicon (mc-Si), N-type, Energy Efficiency, Energy / Geological Survey Netherlands, I, Degradation, Silicon solar cells.
Multi-crystalline silicon (mc-Si), N-type, Energy Efficiency, Energy / Geological Survey Netherlands, I, Degradation, Silicon solar cells.
2 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2000IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
