
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Current Enhancement via a TiO2 Window Layer for CSS Sb2Se3 Solar Cells: Performance Limits and High V oc

Antimony selenide (Sb 2 Se 3 ) is an emerging chalcogenide photovoltaic absorber material that has been the subject of increasing interest in recent years, demonstrating rapid efficiency increases with a material that is simple, abundant, and stable. This paper examines the material from both a theoretical and practical standpoint. The theoretical viability of Sb 2 Se 3 as a solar photovoltaic material is assessed and the maximum spectroscopically limited performance is estimated, with a 200 nm film expected to be capable of achieving a photon conversion efficiency of up to 28.2%. By adapting an existing CdTe close-spaced sublimation (CSS) process, Sb 2 Se 3 material with large rhubarb-like grains is produced and solar cells are fabricated. We show that the established CdS window layer is unsuitable for use with CSS, due to intermixing during higher temperature processing. Substituting CdS with the more stable TiO 2 , a power conversion efficiency of 5.5% and an open-circuit voltage V oc of 0.45 V are achieved; the voltage exceeding current champion devices. This paper demonstrates the potential of CSS for scalable Sb 2 Se 3 deposition and highlights the promise of Sb 2 Se 3 as an abundant and low-toxicity material for solar applications.
- Durham University United Kingdom
- University College London United Kingdom
- University of Liverpool United Kingdom
- Thomas Young Centre United Kingdom
- Thomas Young Centre United Kingdom
Substrates, close-spaced sublimation (CSS), F300, H600, Cadmium compounds, Photovoltaic cells, II-VI semiconductor materials, Photonic band gap, CdS, 620, Absorption, Cascading style sheets, TiO_2, titanium, Antimony selenide (Sb_2Se_3), spectroscopic limited maximum efficiency (SLME)
Substrates, close-spaced sublimation (CSS), F300, H600, Cadmium compounds, Photovoltaic cells, II-VI semiconductor materials, Photonic band gap, CdS, 620, Absorption, Cascading style sheets, TiO_2, titanium, Antimony selenide (Sb_2Se_3), spectroscopic limited maximum efficiency (SLME)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
