Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Phot...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Photovoltaics
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

16.8%-Efficient n+/p GaAs Solar Cells on Si With High Short-Circuit Current Density

Authors: Shizhao Fan; Daehwan Jung; Yukun Sun; Brian D. Li; Diego Martin-Martin; Minjoo L. Lee;

16.8%-Efficient n+/p GaAs Solar Cells on Si With High Short-Circuit Current Density

Abstract

The highest efficiency heteroepitaxial GaAs solar cells on Si have historically been grown in the p+/n polarity, which was preferred due to the decreased sensitivity of open-circuit voltage in such cells to threading dislocations. The n+/p polarity also has potential advantages due to the higher mobility of electrons than holes in GaAs, and most multi-junction solar cells in the literature are grown in this polarity. Here, we demonstrate n+/p GaAs solar cells on Si with a certified AM1.5G efficiency of 16.8%, approaching the best certified efficiency of 18.1% for p+/n cells in the literature. The high efficiency of our n+/p cells is primarily due to the short-circuit current density of 26.5 mA/cm2, which is significantly higher than prior p+/n record cells. The strong carrier collection results from the use of a highly transparent AlInP window layer, thin n+ emitter, and a relatively high minority electron diffusion length in the p - type base. The high quantum efficiency of these n+/p cells at wavelengths of 700–880 nm makes them promising for future triple-junction devices on Si, where the GaAs will serve as a middle sub-cell.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Energy Research