Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating the Impact of SiNx Thickness on Lifetime Degradation in Silicon

Authors: Utkarshaa Varshney; Malcolm Abbott; Alison Ciesla; Daniel Chen; Shaoyang Liu; Chandany Sen; Moonyong Kim; +3 Authors

Evaluating the Impact of SiNx Thickness on Lifetime Degradation in Silicon

Abstract

There has been continuous effort to understand the cause of light- and elevated-temperature-induced degradation (LeTID) in silicon solar cells; however, the actual origin of the defect is still under investigation. Multiple reports in the literature suggest the involvement of hydrogen in activating the recombination-active defect that is responsible for this degradation. In this paper, we investigate the influence of the amount of in-diffused hydrogen in the bulk on the degradation in silicon lifetime test structures. We examine this by varying the thickness of hydrogenated silicon nitride (SiNx:H) before high-temperature firing. Fourier transform infrared spectroscopy is performed to confirm that the hydrogen content in SiNx:H film scales with its thickness. We observe that an increase in the thickness of hydrogen-rich SiNx:H leads to an almost proportional increase in the extent of defect concentration in multicrystalline silicon wafers. We attribute this increase to the higher amount of hydrogen released from thicker SiNx:H layers into the bulk during firing. This paper provides further evidence for the involvement of hydrogen in the formation of the LeTID defect in silicon.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%