
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nondestructive Characterization and Accelerated UV Testing of Browned Field-Aged PV Modules

Encapsulant browning is one of the most common degradation modes found in crystalline silicon field-aged photovoltaic modules. Browning, usually undetected unless severe, reduces the short-circuit current ( I sc) produced by a module. Therefore, field-aged browned modules have been subjected to accelerated UV testing to obtain true end-of-life activation energy for the encapsulant browning mechanism. A novel time- and resource-saving accelerated UV exposure testing method simultaneously allowing multiple module temperatures to be maintained in a single chamber run is presented. Six field-aged crystalline silicon modules of glass/backsheet construction (three each from BP Solar/Solarex MSX 60 and Siemens M55) with similar glass and encapsulant formulation were exposed to a UV dosage of 450 kWh/m2. Through passive heating, the average module temperatures for the BP Solar/Solarex modules were 60 °C, 77 °C, and 85 °C and those of Siemens M55 were 75 °C, 80 °C, and 837 °C. To study UV browning, the modules were intermittently characterized through visual imaging, UV fluorescence imaging, electroluminescence imaging, quantum efficiency measurements, module, and cell-level light I – V measurements. An I sc decrease corroborated the increased extent of browning with increased module temperature. For the BP Solar/Solarex modules, the Low T, Mid T, and the High T modules showed a 1.37%, 2.48%, and 3.26% I sc drop, respectively. The Siemens modules showed a 4.11%, 5.65%, and 6.95% I sc drop. The multiple cell-level I sc data points obtained for each module temperature increased provided statistical significance. Activation energy for encapsulant browning was calculated as 0.44 and 0.72 eV for MSX 60 and M55 modules, respectively.
- Arizona State University United States
- National Renewable Energy Laboratory United States
- National Renewable Energy Laboratory United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
