
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Detailed Analysis and Understanding of the Transport Mechanism of Poly-Si-Based Carrier Selective Junctions

We investigate the transport mechanism of poly-Si-based carrier-selective junctions using the two-dimensional numerical semiconductor device simulations. The detailed transport model considers the charge carrier transport through the pinholes as well as tunneling through a very thin silicon oxide simultaneously. For the verification of the simulation model, the complete temperature dependent transfer length method is modeled and its results are verified with measurements of two different samples. By means of rigorous simulations, the influence of different pinhole geometrical and material parameters on junction resistivity are investigated and explained in detail. From the presented results, the fundamental understanding needed for optimizing the poly-Si-based carrier selective junction in respect to the main design parameters such as doping level in poly-Si, annealing time, silicon oxide thickness, and pinhole density is given. The detailed analysis shows the pinhole channel plays the most crucial role in the design of poly-Si-based carrier-selective junctions if the silicon oxide layer thickness is larger than 2 nm.
- University of Ljubljana Slovenia
- Institut für Solarenergieforschung Germany
- Institut für Solarenergieforschung Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
