
Found an issue? Give us feedback
IEEE Journal of Photovoltaics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Self-Cleaning Hybrid Hydrophobic–Hydrophilic Surfaces: Durability and Effect of Artificial Soilant Particle Type

Authors: Illya Nayshevsky; QianFeng Xu; Jimmy M. Newkirk; Daniel Furhang; David C. Miller; Alan M. Lyons;
Abstract
Dew accelerates the soiling rates and increases the dust adhesion. To use dew for self-cleaning, a fluorinated ethylene propylene coating was applied to suppress the reactions between dust and glass as well as to facilitate the dew to condense as mobile droplets. An array of rectangular hydrophilic channels in the coating increases the condensation rates and droplet slide-off diameters. The durability of the coating was evaluated by artificial UV weathering. Four different types of soilants were used in the artificial soiling tests to assess the effect of soilant type and surface properties on the soiling rates and self-cleaning efficacy under the simulated dew conditions. Soil deposition and self-cleaning mechanisms are being reported.
Related Organizations
- University of Chicago United States
- National Renewable Energy Laboratory United States
- National Renewable Energy Laboratory United States
- King’s University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
11
Top 10%
Average
Top 10%
bronze